

science & technology

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

Space Weather: South Africa's abilities and capabilities

Dr Zama Thobeka Katamzi

UNCOPUOS Meeting, Vienna 11-22 Feb 2013

Space Weather

- Conditions on the Sun and in space that affect the Earth and its technological systems.
- Eruptive events from the Sun (e.g. solar flares and coronal mass ejections (CMEs)) are the main drivers of space weather.

Science and Technology REPUBLIC OF SOUTH AFRICA

Space Weather Elements

& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Space Weather Effects on Technology

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

Regional Space Weather Warning Centre For Africa at SANSA

- Part of the International Space Environmental Service (ISES)
- **Provides important** • service to the nation by providing information, early warnings and forecasts on space weather conditions:
 - Products and services used mainly by defence, aeronautics, navigation and communication

sectors

Space Weather Centre Products: Example

	08-Feb-13	09-Feb-13	10-Feb-13
SSN	45	37	37
Solar Index (WCI for preds)Se*	52	50	48
T-Index**	30 to 105/60	30 to 105/53	30 to 105/46
Solar Activity	moderate	low to moderate	moderate
Qfe	4.1	5.3	6.1
Ap	8.0	12.0	15.0
Magnetic Conditions	Quiet to Unsettled	Unsettled	Unsettled to Active
SA HF Comms Conditions	fair	fair	fair
SW Fadeouts	unlikely	unlikely	unlikely
MUFs***	unstable	unstable	unstable
Current T-Index(Hermanus) -	2013/02/07 11:00	SAST is	58.8
Current T-Index(G/Town) -	2013/02/07 11:00	SAST is	56
Current T-Index(L/Vale) -	2013/02/07 08:00	SAST is	50
Current T-Index(Madimbo)-	2012/07/31 22:30	SAST is	N/A
Current foF2 (Hermanus) -	2013/02/07 09:00	UT is	8.050 MHz
Current foF2 (G/Town) -	2013/02/07 09:00	UT is	8.163 MHz
Current foF2 (L/vale) -	2013/02/07 06:00	UT is	6.262 MHz
Current foF2 (Madimbo) -	2012/07/31 20:30	UT is	N/A MHz
Current Ap-Index -	2013/02/07 11:14	SAST is	3

Green border - OK, Yellow border - beware, Red border - problems for HF comms.

Impact on Economy Examples

- Solar and geomagnetic storms prediction and reporting:
 - allows for rescheduling of satellite launches
 - reduces cost of doing costly magnetic surveys during disturbed periods
 - minimise unnecessary call-outs for apparent (temporary) problems with Satellite
 TV, Microwave links, Internet service
- GPS total electron content (TEC) and scintillation status reports permits mitigation of navigation errors in applications such as European Geostationary Navigation Overlay System (EGNOS)
- Radio propagation prediction optimises the efficiency of long distance communication using High Frequency (HF) radio.

Impact on Economy: Power Systems

- Space weather centre will provide critical information that could be used to mitigate space weather effects on our power system:
 - Prediction of geomagnetic storm impacts permits power system reconfiguration to minimise transformer failures during a space weather storm,
 - Reporting of geomagnetic storm status assists power companies to better manage power cuts and power redistribution during space weather storms,
 - Modeling of the distribution of impacts on power systems allows better localization of costly mitigation measures such as system hardening and series capacitors,
 - Prediction of radiation storms allows for mitigation of space weather impact on communication and control systems used in power management.

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

History: Magnetic Observatory

Year	Event	
1932	Prof Ogg at UCT established a magnetic observatory (in response to International	
	Commission for the Polar Year)	
1937	Magnetic Observatory placed under Trigonometrical Survey Office, Department of Lands	
1941	Magnetic Observatory relocated to Hermanus (to escape the disturbing effects of the	
	electric railway system)	
1969	Magnetic Observatory incorporated into the CSIR	
1987	Some of HMO's services commercialised as a result of CSIR commercialisation	
2001	HMO declared a National Facility and transferred to the NRF	
2011	HMO migrates to the South African National Space Agency (SANSA)	

- Geomagnetic data used as input for global disturbance storm time (Dst) index
 - Major magnetic activity index that is widely used in the space science community
 - HERMANUS one of only four stations used

Cepartment: Science and Technology REPUBLIC OF SOUTH AFRICA

Available Infrastructure

- Proven track record of measuring space from the ground:
 - Outer space:
 - Neutron Monitor
 - Magnetosphere:
 - Superconducting Quantum Interference Device (SQUID), Magnetometers, Magnetotelluric (MT) stations, Lightning Detectors
 - Ionosphere:
 - GPS receivers (dual frequency and scintillation), Ionosondes, High Frequency (HF) Doppler Radar, HF Radar and VLF receivers
 - Lower Atmosphere:
 - Radio Ionospheric Opacity Meter (Riometer) and Lidar

Distribution of Instruments: Southern Africa

& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Distribution of Instruments: Remote Areas

Infrastructure Expansions in Progress

8 MT stations, 3 GPS receivers, 1 HF Doppler system and 1 Spectrometer receiver for e-Callisto network, 1 Solar Telescope

MT Station

Conductivity profiles obtained with MT units

Figure 3. An isotropic inversion model of the main SAMTEX profile across the Kaapvaal craton and surrounding terranes. Points A and B are as shown in Figure 1. Labeled are the resistive root of the Kaapvaal craton and the highly conductive mantle beneath the Bushveld Complex.

Science and Technology REPUBLIC OF SOUTH AFRICA

Nanosatellite Mission: ZACUBE-1

Deployable magnetometer

ISIS deployable VHF/ **UHF** antenna

Deployable HF antenna, beacon transmitter electronics and VGA camera Magnetic ADCS with torquer coils

Clyde Electronic Power Supply (EPS)

VHF/UHF communications module

Pumpkin On-Board Computer (OBC) Pumpkin structure

- **Specifications**
 - 10x10x10 cm, 1.3 kg
- Designed and built by postgrad students at Cape Peninsula University of Technology in partnership with SANSA and University of Stellenbosch
- Has an HF Beacon to • calibrate the HF Radar (SuperDARN) at SANAE
- Launched by Russia early April 2013

Microsatellite Missions: IBSA

- Decision by Science and Technology Ministers of India, Brazil and South Africa (IBSA) in Oct 2009 for joint satellite development
- IBSA -1: Space weather satellite; IBSA-2: Earth Observations
- IBSA-1 mission:
 - South Atlantic Magnetic Anomaly
 - Observations of Magnetic Field
 - Plasma parameters
 - Energetic particles
 - Electron precipitation
 - Beacons for tropospheric scintillation and attenuation
 - Ionospheric research
 - Aurora camera
- Contribution of each country:
 - India: Launch
 - Brazil: Primary instruments
 - South Africa: Satellite bus and secondary instruments

Space Weather Measurements

- Quality ensured data
 - Measurements used in developing global and national models
- Several of our data is used in real-time to monitor space weather
 - K index from local magnetometer stations (HER, SANAE)
 - Ionosonde measurements
- Several of our data contribute to the global community for space weather modeling
 - Ionospheric Predictions Service (IPS, Australia)
 - Space Environment Centre (USA)
 - Ionospheric models (e.g. International Reference Ionosphere (IRI))

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Skills Development: Students

- Contributing to skills development in South Africa and Africa:
 - Postgraduate student supervision
 - University courses in space physics
 - Annual summer and winter schools

technology

Skills Development: Africa

- Workshops in space weather for African scientists
 - International Reference Ionosphere (IRI) workshop, 10-14 Oct 2011
 - Ionospheric Monitoring: Africa, 24-25 Jan 2013
 - International Space Weather Initiative (ISWI)/Scientific Committee on Solar-Terrestrial Physcis (SCOSTEP) School on Space Science, 31 Aug – 09 Sep 2013
 - Scintillation Network Decision Aid (SCINDA), 31 Aug 09 Sep 2013
- Collaborate on scientific projects
 - Integrating data from several countries with space weather capabilities for space modeling
 - Cote d'Ivor, Ethiopia, Kenya, Madagascar, Namibia, Nigeria, Rwanda, Uganda and Zambia

International Collaborations

- Supply data to global and national community for space weather purposes:
 - World Data Centre (WDC) System
 - INTERMAGNET
 - Global Digital Ionogram Database (DiDBase)
 - Space Physics Interactive Data Resource (SPIDR)
 - e-CALLISTO network
 - South African National Defence Force (SANDF)
 - Scintillation Network Decision Aid (SCINDA)
- Collaborate on space weather projects:
 - Geomagnetically Induced Currents (GIC)
 - Canada, Finland, Kenya, Namibia, Sweden and USA
 - Satellite based Aircraft Landing Augmentation system (EGNOS)
 - SANSA Space Operations, ESA
 - Improvements of ionospheric storm time models
 - USA, Europe, International Telegraphic Union (ITU)

science & technology

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

Thank You

SANSA in service of humanity